The earliest stringed instruments were mostly plucked (e.g. the Greek lyre). Bowed instruments may have originated in the equestrian cultures of Central Asia, an example being the Kobyz (Template:Lang-kk) or kyl-kobyz is an ancient Turkic, Kazakh string instrument or Mongolian instrument Morin huur:
Turkic and Mongolian horsemen from Inner Asia were probably the world’s earliest fiddlers. Their two-stringed upright fiddles were strung with horsehair strings, played with horsehair bows, and often feature a carved horse’s head at the end of the neck. ... The violins, violas, and cellos we play today, and whose bows are still strung with horsehair, are a legacy of the nomads.[1]

It is believed that these instruments eventually spread to China, India, the Byzantine Empire and the Middle East, where they developed into instruments such as the erhu in China, the rebab in the Middle East, the lyra in the Byzantine Empire and the esraj in India. The violin in its present form emerged in early 16th-Century Northern Italy, where the port towns of Venice and Genoa maintained extensive ties to central Asia through the trade routes of the silk road. The modern European violin evolved from various bowed stringed instruments from the Middle East[2] and the Byzantine Empire.[3][4] Most likely the first makers of violins borrowed from three types of current instruments: the rebec, in use since the 10th century (itself derived from the Byzantine lyra[5] and the Arabic rebab), the Renaissance fiddle, and the lira da braccio[6] (derived[3] from the Byzantine lira). One of the earliest explicit descriptions of the instrument, including its tuning, was in the Epitome musical by Jambe de Fer, published in Lyon in 1556.[7] By this time, the violin had already begun to spread throughout Europe.

The oldest documented violin to have four strings, like the modern violin, is supposed to have been constructed in 1555 by Andrea Amati, but the date is very doubtful. (Other violins, documented significantly earlier, only had three strings and were called violetta.) The violin immediately became very popular, both among street musicians and the nobility, illustrated by the fact that the French king Charles IX ordered Amati to construct 24 violins for him in 1560.[8] The oldest surviving violin, dated inside, is from this set, and is known as the Charles IX, made in Cremona c. 1560. The finest Renaissance carved and decorated violin in the world is the Gasparo da Salò (1574 c.) owned by Ferdinand II, Archduke of Austria and later, from 1841, by the Norwegian virtuoso Ole Bull, who used it for forty years and thousands of concerts, for his very powerful and beautiful tone, similar to those of a Guarneri. It is now in the Vestlandske Kustindustrimuseum in Bergen (Norway). "The Messiah" or "Le Messie" (also known as the "Salabue") made by Antonio Stradivari in 1716 remains pristine. It is now located in the Ashmolean Museum of Oxford.[9]

San Zaccaria

San Zaccaria Altarpiece (detail), Venice, Giovanni Bellini, 1505

The most famous violin makers (luthiers) between the 16th century and the 18th century include:==

  • The school of Brescia, beginning in the late 14th with liras, violettas, violas and active in the field of the violin in the first half of 16th century
  • The Dalla Corna family, active 1510–1560 in Brescia and Venezia, Italy
  • The Micheli family, active 1530–1615 in Brescia
  • The Inverardi family active 1550–1580 in Brescia
  • The Bertolotti Gasparo da Salò family, active 1530–1615 in Salò and Brescia
  • Gio Paolo Maggini, active 1600–1630 in Brescia
  • The school of Cremona, beginning in the half of 16 century vith violas and violone and in the field of violin in the second half of 16 century
  • The Amati family, active 1500–1740 in Cremona, Italy
  • The Guarneri family, active 1626–1744 in Cremona
  • The Stradivari family, active 1644–1737 in Cremona

Significant changes occurred in the construction of the violin in the 18th century, particularly in the length and angle of the neck, as well as a heavier bass bar. The majority of old instruments have undergone these modifications, and hence are in a significantly different state than when they left the hands of their makers, doubtless with differences in sound and response.[10] But these instruments in their present condition set the standard for perfection in violin craftsmanship and sound, and violin makers all over the world try to come as close to this ideal as possible.

To this day, instruments from the so-called Golden Age of violin making, especially those made by Stradivari and Guarneri del Gesù, are the most sought-after instruments by both collectors and performers. The current record amount paid for a Stradivari violin was $3,544,000.00 at an auction on May 16, 2006. All Stradivarius violins have unique names; the record setting one is known as the Hammer, referring to its first owner, Christian Hammer. It was made in 1707.[11]

History Edit

Use TodayEdit

Types of ViolinEdit

Violin Construction and ComponentsEdit

A violin generally consists of a spruce top (the soundboard, also known as the top platetable, or belly), maple ribs and back, two endblocks, a neck, a bridge, a soundpost, four strings, and various fittings, optionally including a chinrest, which may attach directly over, or to the left of, the tailpiece. A distinctive feature of a violin body is its hourglass-like shape and the arching of its top and back. The hourglass shape comprises two upper bouts, two lower bouts, and two concave C-bouts at the waist, providing clearance for the bow. The "voice" or sound of a violin depends on various factors, including its shape, the wood it is made from, the graduation (the thickness profile) of both the top and back, the varnish that coats its outside surface and the skill of the luthier in doing all of these steps. The varnish and especially the wood continue to improve with age, making the fixed supply of old well-made violins built by famous luthiers much sought-after.

The majority of glued joints in the instrument use animal hide glue rather than common white glue for a number of reasons. Hide glue is capable of making a thinner joint than most other glues, it is reversible (brittle enough to crack with carefully applied force, and removable with very warm water) when disassembly is needed, and since fresh hide glue sticks to old hide glue, more original wood can be preserved when repairing a joint. (More modern glues must be cleaned off entirely for the new joint to be sound, which generally involves scraping off some wood along with the old glue.) Weaker, diluted glue is usually used to fasten the top to the ribs, and the nut to the fingerboard, since common repairs involve removing these parts. The purfling running around the edge of the spruce top provides some protection against cracks originating at the edge. It also allows the top to flex more independently of the rib structure. Painted-on faux purfling on the top is usually a sign of an inferior instrument. The back and ribs are typically made of maple, most often with a matching striped figure, referred to as flamefiddleback, or tiger stripe.

The neck is usually maple with a flamed figure compatible with that of the ribs and back. It carries the fingerboard, typically made of ebony, but often some other wood stained or painted black on cheaper instruments. Ebony is the preferred material because of its hardness, beauty, and superior resistance to wear. Fingerboards are dressed to a particular transverse curve, and have a small lengthwise "scoop," or concavity, slightly more pronounced on the lower strings, especially when meant for gut or synthetic strings. Some old violins (and some made to appear old) have a grafted scroll, evidenced by a glue joint between the pegbox and neck. Many authentic old instruments have had their necks reset to a slightly increased angle, and lengthened by about a centimeter. The neck graft allows the original scroll to be kept with a Baroque violin when bringing its neck into conformance with modern standards.

The bridge is a precisely cut piece of maple that forms the lower anchor point of the vibrating length of the strings and transmits the vibration of the strings to the body of the instrument. Its top curve holds the strings at the proper height from the fingerboard in an arc, allowing each to be sounded separately by the bow. The sound post, or soul post, fits precisely inside the instrument between the back and top, at a carefully chosen spot near the treble foot of the bridge, which it helps support. It also influences the modes of vibration of the top and the back of the instrument.

The tailpiece anchors the strings to the lower bout of the violin by means of the tailgut, which loops around an ebony button called the tailpin (sometimes confusingly called the endpin, like the cello's spike), which fits into a tapered hole in the bottom block. Very often the E string will have a fine tuning lever worked by a small screw turned by the fingers. Fine tuners may also be applied to the other strings, especially on a student instrument, and are sometimes built into the tailpiece. The fine tuners enable the performer to make small changes in the pitch of a string. At the scroll end, the strings wind around the wooden tuning pegs in the pegbox. The tuning pegs are tapered and fit into holes in the peg box. The tuning pegs are held in place by the friction of wood on wood. Strings may be made of metal or less commonly gut or gut wrapped in metal. Strings usually have a colored silk wrapping at both ends, for identification of the string (e.g., G string, D string, A string or E string) and to provide friction against the pegs. The tapered pegs allow friction to be increased or decreased by the player applying appropriate pressure along the axis of the peg while turning it.


Violins are tuned by either turning the large pegs in the pegbox under the scroll, or by adjusting the fine tuner screws at the tailpiece. All violins have pegs; fine tuners (also called fine adjusters) are optional. Most fine tuners consist of a metal screw that moves a lever attached to the string end. The larger pegs will significantly change the pitch of each string, but the fine tuners permit very small pitch adjustments. By turning one clockwise, the pitch becomes sharper (as the string is under more tension) and turning one counterclockwise, the pitch becomes flatter (as the string is under less tension). Fine tuners on all four of the strings are very helpful when using those that have a steel core, and some players use them with synthetic strings as well. Since modern E strings are steel, a fine tuner is nearly always fitted for that string. Fine tuners are not used with gut strings, which are more elastic than steel or synthetic-core strings and do not respond adequately to the very small movements of fine tuners.

To tune a violin, the A string is first tuned to a standard pitch (usually A=440 Hz). (When accompanying or playing with a fixed-pitch instrument such as a piano or accordion, the violin tunes to it. The oboe is generally used to tune orchestras where violins are present, since its sound is penetrating and can be heard over the other woodwind instruments) The remaining strings are then tuned against each other in intervals of perfect fifths by playing them in pairs. A minutely higher tuning is sometimes employed for solo playing to give the instrument a brighter sound; conversely, Baroque music is sometimes played using lower tunings to make the violin's sound more gentle. After tuning, the instrument's bridge may be examined to ensure that it is standing straight and centered between the inner nicks of the f-holes; a crooked bridge may significantly affect the sound of an otherwise well-made violin. After extensive playing, the holes into which the tuning pegs are inserted can become worn, which can lead the peg to slip under tension. This can lead to the pitch of the string dropping, or if the peg becomes completely loose, to the string completely losing tension. A violin in which the tuning pegs are slipping needs to be repaired by a luthier or violin repairperson. Peg dope or peg compound, used regularly, can delay the onset of such wear, while allowing the pegs to turn smoothly.


Similar InstrumentsEdit

  • viola
  • Cello (Violincello)
  • Double bass


External LinksEdit

From Tmp, a Wikia wiki.

Cite error: <ref> tags exist, but no <references/> tag was found
Community content is available under CC-BY-SA unless otherwise noted.